Quiver Varieties and Beilinson-drinfeld Grassmannians of Type A

نویسندگان

  • IVAN MIRKOVIĆ
  • MAXIM VYBORNOV
چکیده

We construct Nakajima’s quiver varieties of type A in terms of conjugacy classes of matrices and (non-Slodowy’s) transverse slices naturally arising from affine Grassmannians. In full generality quiver varieties are embedded into Beilinson-Drinfeld Grassmannians of type A. Our construction provides a compactification of Nakajima’s quiver varieties and a decomposition of an affine Grassmannian into a disjoint union of quiver varieties. As an application we provide a geometric version of skew and symmetric (GL(m), GL(n)) duality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Quiver Varieties and Affine Grassmannians of Type A

We construct Nakajima’s quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framewo...

متن کامل

Quiver Grassmannians, Quiver Varieties and the Preprojective Algebra

Quivers play an important role in the representation theory of algebras, with a key ingredient being the path algebra and the preprojective algebra. Quiver grassmannians are varieties of submodules of a fixed module of the path or preprojective algebra. In the current paper, we study these objects in detail. We show that the quiver grassmannians corresponding to submodules of certain injective ...

متن کامل

Introduction to Affine Grassmannians

3 Uniformization 9 3.1 Uniformization of P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Affine Loop Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Uniformization of general curves . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Applications of uniformization . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 The Beilinson-Drinfeld Grassmann...

متن کامل

Homological Approach to the Hernandez-leclerc Construction and Quiver Varieties

In a previous paper the authors have attached to each Dynkin quiver an associative algebra. The definition is categorical and the algebra is used to construct desingularizations of arbitrary quiver Grassmannians. In the present paper we prove that this algebra is isomorphic to an algebra constructed by Hernandez-Leclerc defined combinatorially and used to describe certain graded Nakajima quiver...

متن کامل

Lecture 10: Highest Weight Crystals from Quiver Varieties

We saw in lectures 7 and 8 how Lusztig’s nilpotent variety can be used to realize U−(g) and the crystal B(∞). Last week we saw how to use quiver grassmannians to realize the highest weight modules V (λ) as a quotient of U−(g), and the same construction realizes the crystals B(λ). This week we discuss a more standard approach to realizing V (λ) and B(λ), namely we will use Nakajima’s quiver vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008